

Making Old Things New

Reuben Thomas

Old Things

● GNU has many “old-fashioned” packages
which are central to its operation:
● coreutils, grep, diffutils…
● not to mention bash, glibc, Linux

Legacy code in maintenance mode?

● Working on these programs is not seen as fun
or cool. A pity:
● They are “merely” maintained
● The lower levels of the stack (other than Linux &

gcc) are not seen as a good place to innovate
● Programming with GNU tools is widely seen as

dull, unproductive & old-fashioned
– Despite many improvements, this is still truth in this

perception

● Is it really worth it?

Plan of this talk

● Explain why it is still worth working on “old”
stuff

● Showcase recent advances
● Look at some projects that use them

● See what still sucks…
● …and make suggestions to fix it
● Point to some potential areas for innovation

Fundaments, not monuments

● Isn’t this all legacy stuff?
● Many developers still work at the command

line
● CLI still the most flexible & universal

interface
● To improve a system, best start at the

bottom
● Mature ≠ Dead

● POSIX & ISO C are still developing

GNU is falling behind (the HURD)

● GNU is developing too (more on that later)
● But too slowly: enough maintainers…

● Core reasonably well-maintained & polished
● …but not enough developers

● Most developers are working on desktop, web
& networking projects

● GCC is a test-bed for new ideas; coreutils is not
● Lack of work on the HURD is symptomatic

(?)

Some new old stuff

● A personal selection of things I’ve used
recently:
● gnulib
● gcc
● autoconf-archive
● ccache
● Emacs

● Don’t forget automake, autoconf, libtool, gcc
&c.

gnulib: turbocharge your autotools

● One-stop shop for compatibility
● Data structures and other general-purpose

code
● Incubator for

● patches
● new GNU APIs

● libposix
● Build system magic

● from linting to distribution

You have to fit the turbo yourself

● gnulib-tool is excellent, but unusual
● Imagine a world in which everything’s like

autoconf
● libposix is not yet released

● Source & binary bloat
● No signposting of maturity/standardization

● Always use the latest version, for good or ill
● Up to now, adoption of gnulib largely driven

by its authors

gcc

● (Almost-)complete C99 support (finally!)
● C0x features appearing
● C++0x, Obj-C 2 partly supported
● Ongoing improvements to FORTRAN & Ada
● “Invisible” improvements: diagnostics,

optimization
● Go (more on that later)

autoconf-archive

● 100s of macros
● Common (and uncommon) configuration

tasks
● Detect dozens of languages & libraries

● When one needs to know versions, optional
bits &c.

● A de facto repository of best practice
● If you write more than 6 lines for a task,

submit a macro to autoconf-archive!

ccache

● Eliminates repeat compilations for C, C++,
Objective C, FORTRAN

● Transparent
● For developers, mostly useful for fiddling

with configure settings
● Don’t use it to work around build system bugs!

Emacs

✔ flymake

✔ whitespace-mode

✗ CEDET

✗ nXhtml

Valgrind

● Surely we’re all using it by now?
● Use it to run test suites

● gnulib’s parallel-tests target supports using
Valgrind

Example 1: grep ≥2.6

● gnulibized
● Code removed
● Files merged with other projects
● Build system updated
● Why the lack of excitement?

● As Jim Meyering said: “it’s grep!”
● But most of the work done by gnulib folk

(Meyering, Bonzini, Blake)

Example 2: Zile ≥ 2.3

● Zile is a lightweight Emacs subset
● Provides the features & commands most

often used
● For quick editing an experienced Emacs user

should rarely get “muscle memory shock”
● Typically about 200Kb binary (~80Kb of

gnulib!)

Zile 2.3: gnulib

● Used gnulib for portability
● Added test suite

● First version with DejaGnu
– But expect had timing problems

● Second version with Lisp scripts
– Extra features needed, but test suite runs on Emacs

too

● 2 kLOC removed (~20% of C)
● Emphasis on behaving exactly like Emacs

● Made debugging & design decisions easier!

Zile 2.4: C99, POSIX-1.2008, GC

● C99
● Declarations anywhere → shorter, more

readable code
● POSIX-1.2008

● No need for non-standard APIs
● GC

● Many code paths simplified by not having to
manage memory

● 1 kLOC removed (~15% of C)

Spreading the word

● Current improvements are absorbed by
maintenance

● Wouldn’t it be great if more people joined in
to push things forward?

● Sometimes change helps because it catches
the imagination

Zile 2.5: Lua

✔ Code simplified
● 80% of size of C
● Considerable room for further simplification

(want at least 50%)

✔ No compilation

✗ Some classes of bug easier to introduce
● No static checks

✔ An inducement to improve test coverage!

Lua

● MIT license

● Dynamic
● Compact code
● No compilation

● Familiar (Pascal/Python-like syntax)

● Small (14 kLOC)

● Mature (>15 years, i.e. about the same as C89)

● First-class functions, closures, co-routines

● Designed to integrate with C & C++

● Highly portable (written in intersection of C++ & C89)

● One of the fastest dynamic languages (LuaJIT)

Writing GNU software in Lua

● If in doubt, ship Lua with your code
● Can do all we want (embedding or

standalone) with autotools
● Libraries: luaposix, lcurses, lrexlib

✗ Incomplete

✗ Inconvenient to install

✔ ctypesgen-json for dynamic binding
● Anyone else want to give it a go?

What still sucks

● autoconf
● Slow, fragile, messy
● Un-reimplementable
● Get rid of it by removing need for it to the point

where a much simpler replacement suffices

● automake
● Compiled down to POSIX Make

● Out of date system dependencies
● POSIX sh

Thrill seeking

● An aside: Go
● Seriously exciting: a GC'd systems language

with a lightweight type system, concurrency
(“goroutines”) & module system, instant
compilation, and performance within 10-20%
of C.

● Instant compilation!

Fix 1: More up-to-date requirements

● C99

● POSIX-1.2008 (via gnulib)
● Install gnulib (libposix) as system veneer

– Force portability improvements to be shared between apps

– Cut build times and source tarball sizes

● GNU Make
● quagmire

● Perl
● Please, no more shell scripts!

– Quoting is to the shell as memory management is to C

Fix 2: Faster builds

● ccache
● Debian: install symlinks in /usr/bin, not

/usr/lib/ccache!
● autoconf cache

● On by default
● Multiple configure runs in one cache?

● Pre-compiled headers
● Shipped for base GNU, GNU+glib,

GNU+glib+gtk

Fix 3: Smaller tool surface

● Assume high-level tools
● automake
● autoconf
● libtool
● Valgrind

● Make it unnecessary to learn about & switch
on each tool one by one

● See also Emacs

Fix 4: More automation

● More regression/unit tests
● make distcheck

● More nix
● More analysis

● make syntax-check
● More tools

● Executable README-release, please!
● Help convince conservative maintainers that

changes won’t break mature code

Fix 5: Better dev environments

● Anjuta (for IDE fans)
● Emacs

● CEDET
● Flymake
● nXhtml
● gdb for console apps

● Instead of minimal deps, easily install GNU
● à la brew
● Helps GNU more generally

Fix 6: Think globally, act globally

● Encourage code to be injected lower down,
not bubble up from individual programs

● Speed up integration of mature code
● autoconf-archive → autoconf, gnulib → glibc
● Documented processes

● Transparent decompression
● patch to grep
● zutils
● Why not a global approach?

Synergy

● The effect of better tools is cumulative
● The longer the lever, the more leverage you

get
● These truisms are not emphasised enough in

GNU

Polish the past, glimpse the future

● This is not just shining the family silver…
● …it’s rubbing the genie’s lamp!
● Go back to basics

● Ubiquitous compression
● Extend the file system

– Network access (httpfs &c.)
– Structured data introspection (physicsfs &c.)

● XML coreutils (xml-coreutils &c.)
● Next-gen terminal (ZUI, Cobra Command Tool,

Subtext, numscipy, mc)

Why do we do it?

● Have fun
● Improve our toys
● Teach others
● Make the world a better place
● …

● Programming is communication
● We communicate our values

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

