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Old Things

● GNU has many “old-fashioned” packages 
which are central to its operation:
● coreutils, grep, diffutils…
● not to mention bash, glibc, Linux



  

Legacy code in maintenance mode?

● Working on these programs is not seen as fun 
or cool. A pity:
● They are “merely” maintained
● The lower levels of the stack (other than Linux & 

gcc) are not seen as a good place to innovate
● Programming with GNU tools is widely seen as 

dull, unproductive & old-fashioned
– Despite many improvements, this is still truth in this 

perception

● Is it really worth it?



  

Plan of this talk 

● Explain why it is still worth working on “old” 
stuff

● Showcase recent advances
● Look at some projects that use them

● See what still sucks…
● …and make suggestions to fix it
● Point to some potential areas for innovation



  

Fundaments, not monuments

● Isn’t this all legacy stuff?
● Many developers still work at the command 

line
● CLI still the most flexible & universal 

interface
● To improve a system, best start at the 

bottom
● Mature ≠ Dead

● POSIX & ISO C are still developing



  

GNU is falling behind (the HURD)

● GNU is developing too (more on that later)
● But too slowly: enough maintainers…

● Core reasonably well-maintained & polished
● …but not enough developers

● Most developers are working on desktop, web 
& networking projects

● GCC is a test-bed for new ideas; coreutils is not
● Lack of work on the HURD is symptomatic 

(?)



  

Some new old stuff

● A personal selection of things I’ve used 
recently:
● gnulib
● gcc
● autoconf-archive
● ccache
● Emacs

● Don’t forget automake, autoconf, libtool, gcc 
&c.



  

gnulib: turbocharge your autotools

● One-stop shop for compatibility
● Data structures and other general-purpose 

code
● Incubator for

● patches
● new GNU APIs

● libposix
● Build system magic

● from linting to distribution



  

You have to fit the turbo yourself

● gnulib-tool is excellent, but unusual
● Imagine a world in which everything’s like 

autoconf
● libposix is not yet released

● Source & binary bloat
● No signposting of maturity/standardization

● Always use the latest version, for good or ill
● Up to now, adoption of gnulib largely driven 

by its authors



  

gcc

● (Almost-)complete C99 support (finally!)
● C0x features appearing
● C++0x, Obj-C 2 partly supported
● Ongoing improvements to FORTRAN & Ada
● “Invisible” improvements: diagnostics, 

optimization
● Go (more on that later)



  

autoconf-archive

● 100s of macros
● Common (and uncommon) configuration 

tasks
● Detect dozens of languages & libraries

● When one needs to know versions, optional 
bits &c.

● A de facto repository of best practice
● If you write more than 6 lines for a task, 

submit a macro to autoconf-archive!



  

ccache

● Eliminates repeat compilations for C, C++, 
Objective C, FORTRAN

● Transparent
● For developers, mostly useful for fiddling 

with configure settings
● Don’t use it to work around build system bugs!



  

Emacs

✔ flymake

✔ whitespace-mode

✗ CEDET

✗ nXhtml



  

Valgrind

● Surely we’re all using it by now?
● Use it to run test suites

● gnulib’s parallel-tests target supports using 
Valgrind



  

Example 1: grep ≥2.6

● gnulibized
● Code removed
● Files merged with other projects
● Build system updated
● Why the lack of excitement?

● As Jim Meyering said: “it’s grep!”
● But most of the work done by gnulib folk 

(Meyering, Bonzini, Blake)



  

Example 2: Zile ≥ 2.3

● Zile is a lightweight Emacs subset
● Provides the features & commands most 

often used
● For quick editing an experienced Emacs user 

should rarely get “muscle memory shock”
● Typically about 200Kb binary (~80Kb of 

gnulib!)



  

Zile 2.3: gnulib

● Used gnulib for portability
● Added test suite

● First version with DejaGnu
– But expect had timing problems

● Second version with Lisp scripts
– Extra features needed, but test suite runs on Emacs 

too

● 2 kLOC removed (~20% of C)
● Emphasis on behaving exactly like Emacs

● Made debugging & design decisions easier!



  

Zile 2.4: C99, POSIX-1.2008, GC

● C99
● Declarations anywhere → shorter, more 

readable code
● POSIX-1.2008

● No need for non-standard APIs
● GC

● Many code paths simplified by not having to 
manage memory

● 1 kLOC removed (~15% of C)



  

Spreading the word

● Current improvements are absorbed by 
maintenance

● Wouldn’t it be great if more people joined in 
to push things forward?

● Sometimes change helps because it catches 
the imagination



  

Zile 2.5: Lua

✔ Code simplified
● 80% of size of C
● Considerable room for further simplification 

(want at least 50%)

✔ No compilation

✗ Some classes of bug easier to introduce
● No static checks

✔ An inducement to improve test coverage!



  

Lua

● MIT license

● Dynamic
● Compact code
● No compilation

● Familiar (Pascal/Python-like syntax)

● Small (14 kLOC)

● Mature (>15 years, i.e. about the same as C89)

● First-class functions, closures, co-routines

● Designed to integrate with C & C++

● Highly portable (written in intersection of C++ & C89)

● One of the fastest dynamic languages (LuaJIT)



  

Writing GNU software in Lua

● If in doubt, ship Lua with your code
● Can do all we want (embedding or 

standalone) with autotools
● Libraries: luaposix, lcurses, lrexlib

✗ Incomplete

✗ Inconvenient to install

✔ ctypesgen-json for dynamic binding
● Anyone else want to give it a go?



  

What still sucks

● autoconf
● Slow, fragile, messy
● Un-reimplementable
● Get rid of it by removing need for it to the point 

where a much simpler replacement suffices

● automake
● Compiled down to POSIX Make

● Out of date system dependencies
● POSIX sh



  

Thrill seeking

● An aside: Go
● Seriously exciting: a GC'd systems language 

with a lightweight type system, concurrency 
(“goroutines”) & module system, instant 
compilation, and performance within 10-20% 
of C.

● Instant compilation!



  

Fix 1: More up-to-date requirements

● C99

● POSIX-1.2008 (via gnulib)
● Install gnulib (libposix) as system veneer

– Force portability improvements to be shared between apps

– Cut build times and source tarball sizes

● GNU Make
● quagmire

● Perl
● Please, no more shell scripts!

– Quoting is to the shell as memory management is to C



  

Fix 2: Faster builds

● ccache
● Debian: install symlinks in /usr/bin, not 

/usr/lib/ccache!
● autoconf cache

● On by default
● Multiple configure runs in one cache?

● Pre-compiled headers
● Shipped for base GNU, GNU+glib, 

GNU+glib+gtk



  

Fix 3: Smaller tool surface

● Assume high-level tools
● automake
● autoconf
● libtool
● Valgrind

● Make it unnecessary to learn about & switch 
on each tool one by one

● See also Emacs



  

Fix 4: More automation

● More regression/unit tests
● make distcheck

● More nix
● More analysis

● make syntax-check
● More tools

● Executable README-release, please!
● Help convince conservative maintainers that 

changes won’t break mature code



  

Fix 5: Better dev environments

● Anjuta (for IDE fans)
● Emacs

● CEDET
● Flymake
● nXhtml
● gdb for console apps

● Instead of minimal deps, easily install GNU
● à la brew
● Helps GNU more generally



  

Fix 6: Think globally, act globally

● Encourage code to be injected lower down, 
not bubble up from individual programs

● Speed up integration of mature code
● autoconf-archive → autoconf, gnulib → glibc
● Documented processes

● Transparent decompression
● patch to grep
● zutils
● Why not a global approach?



  

Synergy

● The effect of better tools is cumulative
● The longer the lever, the more leverage you 

get
● These truisms are not emphasised enough in 

GNU



  

Polish the past, glimpse the future

● This is not just shining the family silver…
● …it’s rubbing the genie’s lamp!
● Go back to basics

● Ubiquitous compression
● Extend the file system

– Network access (httpfs &c.)
– Structured data introspection (physicsfs &c.)

● XML coreutils (xml-coreutils &c.)
● Next-gen terminal (ZUI, Cobra Command Tool, 

Subtext, numscipy, mc)



  

Why do we do it? 

● Have fun
● Improve our toys
● Teach others
● Make the world a better place
● …

● Programming is communication
● We communicate our values
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