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Abstract

Statistical calculations involve iterating a (possibly very large)
dataset one or more times. The designer of a statistical
analysis tool wants to ensure that no more iterations than
necessary are performed. Whereas, on a case by case basis, a
statistical calculation can be optimised by inspection, this is
not practical in a general purpose statistics tool, where a set of
several statistical calculations are to be determined and the
elements of the set are, at time of design, unknown. This
presentation shows how the use of caching, a dependency
graph the optimal number and order of iterations can be
determined.
An implementation is presented, which demonstrates how the
use of lisp can obviate the need for the programmer to
maintain the dependency relationships. Instead, they are
extracted from the implicit information contained within the
program itself.
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The Problem

Statistical analysis requires iterating the data. Sometimes
several iterations are required. However for large datasets,
data iteration is expensive.

Can we find a way to perform the minimum number of
iterations and no more?

Often calculations are unnecessarily repeated. These
calculations involve iterating the data at least once. For large
datasets, that is expensive. We want to minimize the number
of passes.

PSPP’s backend provides an efficient means of iterating large
datasets. However PSPP’s front end is nasty.
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PSPP Background Information

PSPP has few active developers, but (we think) quite a lot of
users. Most users are probably windows users. (SF downloads are
high. Debian Popcon score is low).

Debian popcon:
inst vote old recent no-files
330 48 236 46 0

Pspp4windows Downloads in May 2013: 10,323

Users:

Social scientists (eg. Psychologists)

Students

Govt. Statisticians



GHM 2013

Iterating a dataset

Datasets are streams:
case (i) value (xi ) value (yi ) weight (wi )

1 9 0.67 1
2 3 1.09 1
3 5 -109 1

Streams are :

Sequential access. Can be read in-order only.

Possibly of indeterminate length.

Immutable. You cannot write to them.

Single-Use. Once a case has been read, it cannot be read
again.
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The benefits of caching

Example: The PSPP descriptives command:

DESCRIPTIVES VARIABLES = x

/STATISTICS = MEAN.

DESCRIPTIVES VARIABLES = x

/STATISTICS = SUM.

This user wants to know the arithmetic mean of x .

Now the user wants to know the sum x as well.
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The benefits of starting the processing late

Calculating highest / lowest values in a dataset.

EXAMINE VARIABLES = x

/STATISTICS = EXTREME(3).

/PERCENTILE = 10 20 30 40 50 60 70 80 90 .

One solution is to use binary trees to keep the 3
highest/lowest values.

If we know that the data is sorted on x then the problem is a
lot simpler. In general however, we don’t know that.

But! Certain options demand that the data is sorted.
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Conclusions so far

All statistics require iterating the data at least once.

Some statistics depend on others as intermediate results.
Caching makes sense.

Some dependencies are required before the calculation starts
(a priori) whereas others are required only before the
calculation can be completed.
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Calculating Statistics: Some Examples

Mean:

mean =

∑
xiwi∑
wi

=
sum

count

Naive implementation: 2 passes; Optimal implementation: 1 pass.

Variance:

variance =

∑
(mean− xiwi )

2

count− 1

Optimal (and stable and simple) implementation: 2 passes.
‘Count’ needs to be available before the calculation can finish. but
‘mean’ must be available before the calculation can start.
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A complex example

The test statistic, L, is defined as follows:

L =
(N − k)

(k − 1)

∑k
i=1Ni (Zi · − Z··)

2∑k
i=1

∑Ni
j=1(Zij − Zi ·)2

,

where:

k is the number of different groups to which the samples belong,
N is the total number of samples,
Ni is the number of samples in the ith group,
Yij is the value of the jth sample from the ith group,
Zij = |Yij − Ȳi ·|,
Ȳi · is the mean of i-th group.

Z·· = 1
N

∑k
i=1

∑Ni
j=1 Zij

Zi · = 1
Ni

∑Ni
j=1 Zij

Optimal: 4 ? passes
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The Solution

Clever mathematics can reduce some multi-pass algorithms. But
multi-pass algorithms are a fact of life.
How to devise a framework to ensure that we are not doing more
passes than necessary?
Solution:

Whenever possible, express calculation of a statistic in terms
of simpler statistics.

Cache all the intermediate statistics.

Don’t start the calculation before you know everything that is
required.

Statistical calculations have three parts

1 Before (before iteration of the data starts) Eg: s ← 0;
2 During (during the iteration - once per datum) Eg: s ← s + x ;
3 After (after the iteration is done) Eg: s ← s/count;
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Examples

Example: Count
∑

wi

1 Before: s ← 0;

2 During: s ← s + wi ;

3 After: null-op

Example: Sum
∑

xiwi

1 Before: s ← 0;

2 During: s ← s + xiwi ;

3 After: null-op

Example: Mean
∑

xiwi∑
wi

1 Before: null-op

2 During: null-op

3 After: s ← Sum/Count.
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Statistics have Dependent Relationships

variance =
∑

(mean−xiwi )
count

mean = sum
count

Mean
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How to calculate a statistic in scheme

The three facets of a statistic can be represented by a scheme
alist.

‘(arithmetic-mean . (

(POST . ,(lambda (r acc) (/ (cached r ’sum ’\#(0))

(cached r ’count ’\#()))))

))

‘(count . (

(CALC . ,(lambda (r acc x w) (+ acc w)))

))

‘(sum . (

(CALC . ,(lambda (r acc x w) (+ acc (* (vector-ref x 0) w))))

))
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Representing dependencies in Scheme

A list of lists defines the dependencies:

‘(

(count sum mean)

(count variance)

)

Statistics which post-depend on others can be appended at the
end of the same list.

‘(

(count sum mean)

(count variance stddev)

)

Optimise! Each statistic need only be calculated once:

‘(

(count sum mean)

(variance stddev)

)



GHM 2013

If the list is ill-formed (ie a dependency is missing) an error will
occur. We can use scheme itself to determine the dependencies
and generate, and optimise the list automatically.

;; Return a list of the statistics which are immediate

;; post-dependencies of the statistic STAT

(define (stat-deps stat)

(let*(

(proc (hashq-ref the-statistics (car stat)))

(ppost (assq-ref proc ’POST))

(deps (if ppost (get-deps (procedure-source ppost) (cadr stat)) ’()))

)

(stats-with-deps deps)))

;; Return a list of the stastistics which are immediate

;; pre-dependencies of STAT

(define (immediate-pre-dep stat)

(let* (

(s (hashq-ref the-statistics (car stat)))

(pre (assq-ref s ’CALC))

(deps (if pre (get-deps (procedure-source pre) (cadr stat)) ’()))

)

deps))
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Future Work

Iterative statistics
Some statistics can only be calculated be passing through the data
an indeterminate number of times (usually with an upper bound)
until some convergence condition is reached.
For example Logistic Regression or Sorting:
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Review of the merge sort
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What does it mean for Gnu ?

Thoughtful combination of Guile and C can provide an
efficient yet flexible statistical analysis system.

PSPP’s backend + Guile could retain the efficiency, yet make
writing new procedures accessible to non-hackers.

R is a free replacement for S. PSPP is a free replacement for
SPSS. DAP is a free replacement for SAS. We could create a
statistical analysis tool which combines the advantages of
these - which is truly unique to GNU.


